Neo Blockchain On Azure: Introduction to NEO-CLI

In my previous post, we started with a small NEO private net. Today, we will take a quick look into NEO-CLI and what it offers. Although it is named NEO-CLI, in practicality, this is a full blown NEO blockchain node instead of just a CLI tool to communicate with it. NEO offers two node types – GUI and CLI. I think the suffix comes from that and I wanted to explicitly mention it since it is a tad confusing.

At first, we will try to connect to our newly created private net. To do that, we will start with installing a separate installation of NEO-CLI. Installing NEO-CLI is pretty straight forward. You will need .Net core installed in your machine. If you don’t follow the instruction here.

Installation

I’m currently using an Ubuntu 16.04 as a reference OS. After installing .Net core framework you will need to install the NEO-CLI package. And since Im on a debian it was quite easy to do so the following way:

sudo apt-get install libleveldb-dev sqlite3 libsqlite3-dev

Configuration

We are testing and my local machine doesn’t have a frame of reference of the test private net we just created over Azure. To give this node a frame of reference we need to configure its SeedList to point to our own private net. What is a seed list? Simply put, it is nothing more than a list of URLs as described in the official NEO documentation.  This is the first set of nodes NEO-CLI will try to connect to when it boots up.

To configure the aforementioned SeedList, we will modify the protocol.json file, under the neo-cli directory.

We need to update the SeedList section of the configuration the following way:

“SeedList”: [
     "IP_or_FQDN_of_Azure_Private_Net_Host:20333”
 ],

If you opt to use the public test net, rename the protocol.testnet.json to protocol.json and you should be good to go.

Booting up the node

Now, it is time to start the node, we are going to invoke:

dotnet neo-cli.dll --log --nopeers

The log option will log the smart contract information and nopeers makes the node only connect to the seed nodes from the configuration file. this is something we want since this is a private network.

Creating a new wallet

Let’s create a new wallet then.

neo> create wallet mywallet.db3

NEO-CLI will ask for password twice for the wallet, pick your desired password. And copy the address and pubkey to keep it a safe place. If you forget the public key you can use list key command to see it.

More on protocol.json

Before we end this one, we will have one last look at the protocol.json configuration file for our node.

{
  "ProtocolConfiguration": {
    "Magic": 56753,
    "AddressVersion": 23,
    "StandbyValidators": [
        "02b3622bf4017bdfe317c58aed5f4c753f206b7db896046fa7d774bbc4bf7f8dc2",
        "02103a7f7dd016558597f7960d27c516a4394fd968b9e65155eb4b013e4040406e",
        "03d90c07df63e690ce77912e10ab51acc944b66860237b608c4f8f8309e71ee699",
        "02a7bc55fe8684e0119768d104ba30795bdcc86619e864add26156723ed185cd62"
    ],
    "SeedList": [
        "127.0.0.1:20333",
        "127.0.0.1:20334",
        "127.0.0.1:20335",
        "127.0.0.1:20336"
    ],
    "RPCList":[
      "http://127.0.0.1:30333"
    ],
    "SystemFee": {
        "EnrollmentTransaction": 1000,
        "IssueTransaction": 500,
        "PublishTransaction": 500,
        "RegisterTransaction": 10000
    }
  },

  "ApplicationConfiguration": {
    "DataDirectoryPath": "Chains/privnet",
    "NotificationDataPath": "Chains/privnet_notif",
    "RPCPort": 20332,
    "NodePort": 20333,
    "WsPort": 20334,
    "UriPrefix": [ "http://*:20332" ],
    "SslCert": "",
    "SslCertPassword": "",
    "BootstrapFile":"",
    "NotificationBootstrapFile":"",
    "DebugStorage":1
  }
}
  • The Magic field contains a uint value that denotes the source network of the message.
  • The StandbyValidators field are the validating nodes in the private node. It is the list of public keys of aforementioned validating nodes. We created 4 wallet here in this specific example and thus we have 4 entries here. 4 is the minimum number of nodes here to be listed for reaching a consensus.
  • SeedList is configured to localhost in this example configuration since NEO-CLI is booting up against the localhost node.
  • SystemFee section is the section that defines the system fee. As the configuration states, the registration fee for assets is 100000 GAS depicted by the RegisterTransaction field. EnrollmentTransaction field defines the registration fee for book-keepers. IssueTransaction is the fee for distributing assets. Finally the PublishTransaction is the fee for smart contracts.

 

That sums it up for this time. Next, we are going to have a look at how consensus works in NEO. And finally we will write a smart contract on NEO in C#. 🙂

One thought on “Neo Blockchain On Azure: Introduction to NEO-CLI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s